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It is shown that the electrostatic energy functional is the only one available 
for fitting a given potential using approximate electric potentials arising from 
point charges. The significance of this fitting is examined in terms of splines. 
To illustrate the method the electron densities of atoms are modelled using 
point charges at the vertices of tetrahedra and of cubes. 
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1. Introduction 

The electrostatic potential around an atom or molecule is a major factor in 
determining the interaction energy between it and other molecules. Calculations 
on condensed phases become feasible only if this energy can be estimated with 
speed and accuracy. This paper is concerned with point charge models since 
these can be very efficient in practice and very easy to visualise. The assumption 
is made that the purpose of the model is to describe the potential as well as 
possible. It is then shown, using ideas from the theory of splines, that the Dirichlet 
functional, which gives the total energy of a charge distribution, is the only 
satisfactory criterion for the fitting. The self-energy of the point charge, which 
is a problem for classical electrostatics, is avoided by a simple device. 

The theory is applied to the H, He, Li and Be atoms using tetrahedral and 
cubical arrays of charges. These demonstrate that the charges give a potential 
which is of high accuracy for relatively large distances and still tolerable for 
short distances. The use of these charges to calculate other properties is also 
illustrated. 
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2. The Optimizing Functional 

If the potential at the point r is 4)(r) and 4)*(r) is an approximation to it then 
any functional used to determine an optimal fitting must depend on the error 
potential (4) -4)*). The simplest such functional is the least squares one 

f(4) _4),)2 dr. (1) 

When 4)* is derived from a point charge of magnitude qt at the position rt then 

4) * = qJlr  - r,I (2) 

and the integral ~ (4),)2 dr diverges over the infinite volume. Thus (1) cannot be 
used as the functional. 

In the theory of splines [1] the fitting of one function to another can be achieved 
by minimizing a functional whose integrand is the square of the difference in 
some higher derivative. The cubic spline, for example, involves the difference 
of second derivatives. There are several ways in which the spline idea can be 
generalized to R 3. For the present purpose the dissection of space into volumes, 
within which the function is a polynomial, is not useful but the idea of optimizing 
a functional, with certain points, or nodes, selected for close fitting, is still 
valuable. In three dimensions it is necessary to insist that the form of the 
functional should be invariant to rotations of space. An appropriate functional 
using the second derivatives would then be 

f (V24) V24) *)2 dr (3) 

since the Laplacian operator is invariant to coordinate rotations. Because of the 
Poisson equation this is equivalent to a least squares fitting of the electron 
density. The functional (3) also leads to difficulties. Under suitable boundary 
conditions involving 4) becoming small at large distances, (3) can be transformed 
into 

f (4) dr, (4) 

just as the cubic spline is generated by expressing the fourth derivative as a sum 
of delta functions, so V44)* is taken as a linear combination of three-dimensional 
delta functions. The solution to 

is 

V4 ~) * ~" -41rq8 (r - r, ) 

V24) * = q / i r - r , I  

(5) 

and hence 

4)* =~ql r - r ,  I. (6) 
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This means that &* is itself divergent for large r and the functional is even more 
SO. 

The Dirichlet functional of the error field, 

' I  U = ~ (V~b - V~b*)2 d~" (7) 

is intermediate between the others and, since it has the physical significance of 
being an energy, has more reason to be finite. It is equivalent to a least squares 
fit of the electric fields. It transforms into 

1 I 8qJ" ((~ -- (~ *)(V2~ - -V2~ *) dT (8) 

and V2~b* can be represented as a sum of delta functions without any immediate 
difficulty. There is a long history of using the Dirichlet functional in solving 
electrostatic problems [2]. By definition U-> 0 and its magnitude measures the 
quality of the approximation. The use of this functional for continuous charge 
distributions p* is discussed elsewhere [3]. 

3. Point Charges 

Every classical theory involving point charges has difficulties over the self-energy 
of the charge if it remains a point charge. These can be avoided by giving the 
charge a small spherical shape. It is simplest to treat this as a conducting ball 
so that all the charge resides on the surface and the potential inside is uniform 
but it could also be treated as a solid ball of charge. Because of the spherical 
shape the potential outside retains the point charge form provided the balls 
never overlap. The self-energy of a point charge of magnitude q when spread 
over a sphere of radius a is 

�89 (9) 

The electron density is modelled by a set of point charges 

p*(r) = Y~ q,6(r -r , )  (10) 
t 

where qt is the charge at ft. The corresponding potential is 

*(r) = Y. q,/[r - r,[. (11) 
t 

The functional U becomes 

1 
u =~ I (4 -4*)(0 -p*) dr 

=if S f 2 qSpdr-  qbp*dr+l  r (12) 
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The first term is the energy of the original distribution. The second becomes 

I q~P* = E qKkt (13) dr  
t 

where ~bt = ~b (rt). Strictly, when the point becomes a ball, the potential averaged 
over the spherical surface is required. By expanding ~b around the centre of the 
sphere it can be shown that 

I,:;bp* " 2 dr = Y~ qt(~)t - -  27ra tpt) 4- O(a 4) (14) 
t 

where at is the radius of the sphere and pt = p (rt). Since at is assumed to be small, 
this extra term in (14) is a small correction and will be ignored. The final term 
is 

1 i f c~,p, d,r=.~ ~t~,q~h/r,t 1 2 + ~ q , / a ,  (15) 

where rst = [rs -rt] .  The influence of the self-energy term can be greatly reduced 
by assigning radii proportional to the square of the charges 

a, =q]/(2b) (16) 

so that each has the same self-energy, b, and the term becomes a fixed constant. 
Thus, for N charges, 

1 d r - ~  1 U = ~ I  ckp q ~ t + ~ t ~ q ~ d r s t + N b ,  (17) 

where (13) is used instead of (14). 

The optimum value of qt is found by differentiation of (17) 

OU 
- -  = -q~, + • q,/rst = 0. (18) 
Oqt ~ t  

This can be interpreted as determining the charges so that the approximate 
potential at each charge is equal to the true potential there. The optimized value 
of U is 

Uopt = 4)P dr - -  ~, q~qt/r,t +Nb. (19) 
2 s~t 

Similarly the location of the charges is found by taking the gradient of (17). 

OU Od~t 
Or--~ = -qt  Or--7+qt s~t ort \ st/ 

which equates the electric fields 

Et =E*.  (21) 

Thus, as in spline theory, the optimization of the functional ensures that the 
potential and its gradient are exactly fitted at the point charge positions. 
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4. Modified Point Charges 

In many applications the approximate potential will be used at large rather than 
small distances from the nuclei and consequently some modification of the 
procedure to ensure accurate long-range behaviour is desirable. The easiest 
constraint to impose is that the total charge should be conserved since this 
produces the correct first term in the asymptotic potential. The constraint is 
introduced by means of a Lagrange multiplier and the functional to be optimized 
becomes 

W =  U - A  2 q .  (22) 
t 

In this treatment it is appropriate to adopt an assignment of the radii, which 
replaces (16), 

as = qs/(2c) (23) 

so that each sphere is at the same potential and 

1 2 

-- ~s as  = 2 q s/ c }~ qs. (24) 
s 

Thus 

l f &pdr_Z 1 qd)t+~ Y, Y, q t / rs t+(c-a)  Y, qt. (25) 
W = - 2  s e t  t 

The optimum charges now satisfy 

OW 
- q ) t + ( c - A ) +  ~, qs/rs, = 0  (26) 

Oqt s e t  

instead of (18) so that the approximate potential at each point charge now differs 
from the true potential by the constant amount (c -A) .  On the other hand the 
optimization of the locations forces the electric fields at the points to agree since 
(20) remains the equations determining them. The optimized value of W, when 
(26) is satisfied, is 

1 l e o  1 Wopt = ~ d r - ~ t 2 q ~ q t / r s t  (27) 

and this is exactly the classical expression with no self-energy. The multiplier A 
is a parameter in Eqs. (26) and is determined by fixing the total charge 

Y. qt = O. (28) 
t 

It is satisfactory to note that c can be absorbed into A and eliminated from (27). 
Because of the constraint term, W is not necessarily positive but its magnitude 
remains a useful global measure of the fitting. This use of W corresponds to 
Thomson's theorem rather than Dirichlet's theorem in the classical context [2]. 
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5. Tetrahedra 

To illustrate the power and utility of these ideas it is interesting to apply them 
to atoms since the spherical charge density is very different from a set of point 
charges. Some symmetry can be retained by restricting the points to be the 
vertices of a regular solid. The simplest is the tetrahedron. 

The results of a fitting of 4 charges in tetrahedral configuration are shown in 
Table 1. The electron densities calculated from Hartree-Fock wavefunctions 
were used [4]. 

Since the charges are fixed, only the radius of the tetrahedron R is optimized. 
As might be expected, the values of Wopt show that the quality of the fitting 
deteriorates rapidly as the total charge increases. The two last rows show the 
mean value of 1/r compared with the point approximation O./R. The approxima- 
tion is 20-30% higher. 

6. Cubes 

The next simplest regular solid is the cube. Each point charge is ~ of the total 
charge and only the radius is optimized. The results are summarized in Table 
2. They show a pattern very similar to those for tetrahedra but the accuracy, as 
judged by the value of Wopt and by the closeness of O/R to mean value of 
1/r, is substantially improved. 

One way of extending these calculations is to surround the cube by a second 
conformal cube. The charges on each are found by solving the linear equations 
(26). The equations for the cube radii (20) are non-linear so these radii are 
determined by direct minimization of Wopt. When this optimization was applied 

Table 1. Charge tetrahedra 

H He Li Be 

R 0.7621 0.4918 0.3807 0.3458 
�89 0.3125 2.0515 4.0621 7.1561 
Wopt 0.0112 0.1837 -1.3673 -3.4702 
~#/rd~ 1 3.3746 5.7154 8.4088 
O/R 1.3121 4.0668 7.8810 11.5684 

Table 2. Charge cubes 

H He Li Be 

R 0.9042 0.6043 0.5274 0.4792 
�89 dr 0.3125 2.0515 4.0621 7.1561 
Wopt -0.0286 0.0098 - 1.2017 -3.1433 
p/r d-r 1 3.3746 5.7154 8.4088 

O/R 1.1060 2.4069 3.5530 8.3477 



Approximate Electric Potentials 363 

to the atoms on a computer  it proved to be very unstable with various local 
minima. Only for Be were the results consistent and reproducible.  

The inner cube for Be had a radius of 0.3458 and each charge was 0.3662. The 
outer  cube had radius 2.8011 and charges of 0.1338. The value of Wopt is reduced 
to 1.7445. The mean  value of 1/r for the charges is 8.8539. 

For Li there seemed to be convergence towards a minimum which had radii 
0.4297, 4.6564 and charges 0.3361, 0.03894. This gives Wopt = 1.3125 and a 
mean  1/r of 6.3235. 

7. Potential Fitting 

Since the purpose of the optimization is to fit the electrostatic potential  it is of 
interest to compare  them directly. For H the potential  is exactly 

~b = (1 - e -2r (1 + r))/r (29) 

so this a tom is convenient  to use to illustrate the results. Very similar results 
are found for other atoms. Table 3 shows ~b and the approximate  potential  &* 
due to the point charges for selected values of r. The  asymptotic form, l / r ,  is 
included for comparison. The point charge potential  is not spherically symmetric 
so a direction has to be selected. The middle of a te trahedron edge has been 
chosen since this is a minimum path for 4~* and so the comparison is more  
meaningful. 

This table shows clearly that the approximate  potentials reproduce the 1/r 
behaviour  at large distances as they are constrained to do and that they tend to 
a realistic finite value near the nucleus. Thus a cluster of four charges is sufficient 
to demonstra te  the pentrat ion effect when the field point is inside the charge 
cloud. The improvement  on increasing to eight charges is most  apparent  in this 
inner penetrat ion zone. 

8. Conclusion 

It has been shown that the electrostatic energy of the error field is a functional 
which can be minimized, subject to the constraint of a constant total charge, 

Table 3. Electrostatic potential for H atom 

6 '  6 '  
r th (tetrahedron) (cube) 1/r 

0.0885 0.9952 1.3110 1.1059 11.2951 
0.2656 0.9637 1.2869 1.1029 3.7650 
0.6197 0.8569 1.1112 1.0392 1.6136 
1.3280 0.6299 0.7000 0.7085 0.7530 
2.7446 0.3587 0.3606 0.3628 0.3644 
5.5777 0.1793 0.1790 0.1792 0.1793 

11.2438 0.08894 0.08892 0.08894 0.08894 
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using point charges to represent  the electron distribution. Since this is a fitting 
of the electrostatic potential  it is not surprising that the approximate  potentials 
reproduce fairly closely the true ones. It is pleasing to see that problems over 
the self-energy of the point charge can be eliminated. Other  energy-related 
quantities can be estimated f rom the point charges. The electrostatic energy 
itself is tolerably approximated for the smaller atoms but becomes poor  as the 
individual point charges increase. The electron-nuclear energy behaves similarly. 

A by-product  of these calculations has been the realization that when more  than 
one point charge is used to represent  the electrons in an a tom the charges must 
not coincide with the nucleus. For the electric potential  the penetrat ion effect, 
the finite potential  at the nucleus, is second only to the correct asymptotic form. 
When point charges are used to represent  the electron density in molecules it 
follows that the penetrat ion effect at one atom will be affecting the charges used 
for its neighbours. 

References 

1. Ahlberg, J. H., Nilson, E. N. Walsh, J. L.: The theory of splines and their applications. New 
York: Academic Press 1967 

2. Polya, G., Szeg6, G.: Isoperimetric inequalities in mathematical physics. Princeton: University 
Press 1951 

3. Hall, G. G., Martin, D.: Israel. J. Chem. 19, 255 (1980) 
4. Mann, J. B.: Atomic structure calculation. Los Alamos Scientific Lab. Report, 1967 

Received February 18, 1983 


